$\mathrm{C}_{\mathrm{o}} \mathrm{P}_{\text {tuing } \mathrm{m}} \mathrm{A}_{\text {trs }}$

Calculation Policy

This policy has been designed to teach children through the use of concrete, pictorial and abstract methods. This calculation policy should be used to support children to develop a deep understanding of number and calculation.

Background

This policy has been developed by Maths Coordinators with a specific interest in the use of Singapore methods to develop number awareness and fluency.
The policy only details the strategies; teachers must plan opportunities for pupils to apply these; for example, when solving problems, or where opportunities emerge elsewhere in the curriculum.

Using the concrete-pictorial-abstract approach:

Children develop an understanding of a mathematical concept through the three steps (or representation) of concrete-pictorial-abstract approach. Reinforcement is achieved by going back and forth between these representations.

Concrete representation The enactive stage - a pupil is first introduced to an idea or a skill by acting it out with real objects. This is a 'hands on' component using real objects and it is the foundation for conceptual understanding.

Pictorial representation The iconic stage - a pupil has sufficiently understood the hands-on experiences performed and can now relate them to representations, such as a diagram or picture of the problem.

Abstract representation The symbolic stage - a pupil is now capable of representing problems by using mathematical notation, for example: $12 \div 2=6$.

Guidance

This is document provides guidance and examples for key objectives for each year group but is not to be followed as a complete planning aid as not all objectives are exemplified.

Reception

Addition

Explore part part whole relationship

Using the ten frame to support addition of single digits - counting all/combining two groups

00000	$6+4=10$
00000	$4+4=8$
000	$5+2=7$
00000	500
00000	$2+4=6$
0	
0	

Solving problems using concrete and pictorial images.

Subtraction

Taking away after counting out practical equipment. Children would be encouraged to physically remove these using touch counting.

By touch counting and dragging in this way, it allows children to keep track of how many they are removing so they don't have to keep recounting. They will then touch count the amount that are left to find the answer.

donut donuts

$8-4=$

Those who are ready may record their own calculations

0	1	2	3	4	5	6	7	8	9	10

Using the ten frame to support subtraction by taking away
5 Pencils

Peter has 5 pencils and 3 erasers. How many more pencils than erasers does he have? Solving problems using concrete and pictorial images.

Multiplication

Double 2

Year 1

Additio			
Joining two groups and then recounting all objects using one-to-one Correspondence (lots of practice making 10 and numbers to 10 e.g. $6+4=10$ or $3+5=$ 8)	$3+4=7$		
Learn number bonds to 20 and demonstrate related facts Teach addition and subtraction alongside each other as pupils need to see the relationship between the facts.	$\begin{aligned} & 8+4=12 \\ & 4+8=12 \end{aligned}$ This is a family of addition and subtraction facts. $\begin{aligned} & 12-8=4 \\ & 12-4=8 \end{aligned}$		
Add and subtract one digit numbers and two digit numbers to 20 , including zero	$8+1=9$ जुell slarir is $8+1=9$		
Bridging 10 Use ten frames, Singapore bars, egg boxes and number lines to practice. Chn should start with the larger number and add the smaller number seeing what makes ten and what is left over.		0 0 0 0 0 0 0 0 0 0 0 0 0 9 in one and 3 in to make the 9 in	other. Take one from ten.... $10+2=12$

Subtraction

Taking away should begin with physical objects: objects, cubes, Dienes etc	
Subtraction by counting back	
Subtracting a single digit number from a single digit number and a single digit from a two digit by crossing out pictures	Subtract by Crossing Out $7-2=5$ 5 ladybirds are left.
Subtracting using the part part whole (include problem solving with missing digits). $?-5=2$	

Subtraction by subtracting from 10 Children subtract from 10 and not from ones	$14-8=\text { ? }$ Let's Learn Subtract from 10 $14-8=6$ Sam has 6 doughnuts left.
When subtracting using Dienes children should be taught to regroup a ten rod for 10 ones and then subtract from those ones	$20-4=16$
Subtracting multiples of 10 Using the vocabulary of 1 ten, 2 tens etc alongside 10, 20, 30 Is very important here as pupils need to understand that it is a 10 not a 1 that is being taken away	

| Counting in multiples of
 2, 5 and 10 from zero | |
| :--- | :--- | :--- | :--- |
| Children should count
 the number of groups on
 their fingers as they are
 skip counting. | 4 groups of $2=8$ |

Year 2

Subtraction

Multiplication

Skip counting in multiples of $2,3,5,10$ from 0	
Recall and use multiplication facts for the multiplication tables 2, 5 and 10.	
I can use multiplication (x) and equal (=) sign when writing out my times tables.	
Multiplication is commutative Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	How many dots ane there? $2 \times 5=10$ $5 \times 2=10$ 2×5 is equal to 5×2. $12=3 \times 4 \quad 12=4 \times 3$
Solve multiplication problems in context using arrays and repeated addition	$3 \times 5=$ \square $5 \times 3=$ \square

Division

Recall and use division facts for the multiplication tables 2,5 and 10.	
Solve division problems in context using concrete objects by sharing	There are 18 sausages. Put 18 sausages $2 \times 9=18$ There are 9 sausages on each plate. $18 \div 2=9$
Solve division problems in context using arrays	
I can solve division as grouping.	Put 10 buns in groups of 2. How many plates are there?

Year 3

Addition

Step 2 | Add the tens. |
| :--- |
| 3 tens 2 tens $=5$ tens |

There are 953 flowers altogether.
$236+345=$

11

Step 2 Add the tens. I

1 ten +3 tens +4 tens $=8$ tens

	h	t
0		
	2	3
	6	
+	4	5
	8	1

Step 3 Add the hundreds.
2 hundreds +3 hundreds $=5$ hundreds

\mathbf{h}	\mathbf{t}	$\mathbf{0}$
2	$\frac{1}{3}$	6
$+\quad 3$	4	5
5	8	1

$236+345=581$

Using the bar to find missing digits.	Bar Model to support understanding of problem solving: It is important for children to use the bar in this way to encourage the use of it to aid with problem solving.	A man sold 230 balloons at a carnival in the morning. He sold another 86 balloons in the evening. How many balloons did he sell in all?	

Subtraction

Subtract up to 3
digits from 3 digits.

Very important for children to use dienes equipment along with a place value chart to support.

Only when secure with the method should exchanging be introduced.

Subtract 723 from 975.

Step 3 Subtract the hundreds.
9 hundreds -7 hundreds $=2$ hundreds

$975-723=252$

Division

Dividing by grouping undrestanding the concept of remainders.	Start with using the real objects-or objects that represent the calculation. 戠 $13 \div 4=3$ Remainder 1
Dividing using short division. Once children are secure with division as grouping and demonstrate this using number lines, arrays etc., short division for larger 2-digit numbers should be introduced, initially with carefully selected examples requiring no calculating of remainders at all. Start by introducing the layout of short division by comparing it to an array.	 Remind children of correct place value, that 69 is equal to 60 and 9, but in short division, pose: - How many 3's in 6? $=2$, and record it above the 6 tens. - How many 3's in 9 ? $=3$, and record it above the 9 ones. Once children demonstrate a full understanding of remainders, and also the short division method taught, they can be taught how to use the method when remainders occur within the calculation (e.g. $72 \div 3$), and be taught to 'carry' the remainder onto the next digit.
Using the bar to aid the solving of division problems.	Four children bought a present for $£ 28$. They shared the costs equally. How much did each child pay?

Year 4

Addition				
Adding numbers with up to 4 digits. Again this should start with the children using dienes to support them with lots of discussion about the value of each digit.				1 ten = 11 tens undred and 1 ten $\begin{array}{r} 5 \\ \hline \end{array} \mathbf{6}$ thousands $\begin{array}{r} 51 \\ 56 \\ +123 \\ \hline \end{array}$
Using the bar to find missing digits. It is important for children to use the bar in this way to encourage the use of it to aid with problem solving.	Alison jogs 6,860 metres and Calvin jogs 5,470 metres. How far do they jog altogether?	r but he	elping to guide \square 6860m	children to the 5470m
Subtraction				
To subtract with numbers up to four digits including exchanging when children are secure. Again children need to use dienes to support their learning.				There aren't enough ones. $\begin{array}{rrrr} 5 & 289 \\ - & 3 & 10 \\ \hline \end{array}$

Multiplication

Division

Dividing up to three digit numbers by a one digit number using short division.

Only when the children are secure with dividing a two digit number should they move onto a 3 digit number.
Dividing using the bar.

Desmond and Melissa collect cards. They have 192 cards in all. Melissa has three
times as many cards as Desmond. How many cards does Desmond have?

192				
$D=?$	M	M	M	

Year 5

Using the bar to find missing digits.

It is important for children to use the bar in this way to encourage the use of it to aid with problem solving.

This is not a form of getting the correct answer but helping to guide children to the correct operation.

MacDonalds sold $£ 9957.68$ worth of hamburgers and $£ 1238.5$ worth of chicken nuggets. How much money did they take altogether?

Subtraction

Subtract with at least four digit numbers including two decimal places. Include money, measures and decimals ensuring that children do this practically before the abstract.	Subtract with decimal values, including mixtures of integers and decimals, aligning the decimal point. $\begin{array}{r} 2 x^{\prime} x^{\prime} 0^{2} 86 \\ -\quad 2128 \\ \hline 28928 \end{array}$
Using the bar to find missing digits. It is important for children to use the bar in this way to encourage the use of it to aid with problem solving.	A whole to Lapland costs $£ 5005$ for a family of four, the Smith's have only saved $£ 3787.75$, how much money do they still need to find?
	Multiplication
Multiplying up to four digit numbers by two digits using long multiplication. Children need to be taught to approximate first, e.g. for 72×38, they will use rounding: 72×38 is approximately $70 \times 40=\mathbf{2 8 0 0}$, and use the approximation to check the	56 \times 27 392 (56×7) 1120 (56×20) 1512 - Explain that first we are multiplying the top number by 7 starting with the units. (any carrying needs to be done underneath the numbers).

reasonableness of their answer.	- Now explain that we need to put a 0 underneath—explain that this is because we are multiplying the number by 20.. (2 tens) which is the same as multiplying 10 and 2. - Now add the 2 numbers together to give you the answer. - This will need lots of modeling to show the children. $\begin{array}{r} 1234 \\ \times \quad 16 \\ \times 7404 \\ \hline 12340 \\ \hline 19744 \\ \hline \end{array}$
Using the bar to support multiplication.	The cost to run a sports centre is $£ 4375$ a week, how much would it cost to run for 16 weeks?
	Division
Diving with up to four digit numbers by one digit including numbers where remainders are left.	Short division with remainders: Now that pupils are introduced to examples that give rise to remainder answers, division needs to have a real life problem solving context, where pupils consider the meaning of the remainder and how to express it, ie. as a fraction, a decimal, or as a rounded number or value, depending upon the context of the problem.
Using the bar to support division problems.	Bar Model to support understanding of problem solving: Frank has 4920 apples. He needs to put them into baskets of 40 . How many baskets does he need?

Year 6

Multiplication

